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ABSTRACT

This paper will investigate the pros and cons of synchronous and asynchronous resets. It will then
look at usage of each type of reset followed by recommendations for proper usage of each type.



1.0 Introduction

The topic of reset design is surprisingly complex and poorly emphasized. Engineering schools
generaly do an inadequate job of detailing the pitfalls of improper reset design. Based on our
industry and consulting experience, we have compiled our current understanding of issues related
to reset-design and for this paper have added the expertise of our colleague Steve Golson, who
has done some very innovative reset design work. We continually solicit and welcome any
feedback from colleagues related to this important design issue.

We presented our first paper on reset issues and techniques at the March 2002 SNUG
conference[4] and have subsequently received numerous email responses and questions related to
reset design issues.

We obvioudly did not adequately explain al of the issues related to the asynchronous reset
synchronizer circuit because many of the emails we have received have asked if there are
metastability problems related to the described circuit. The answer to this question is, no, there
are no metastability issues related to this circuit and the technical analysis and explanation are now
detailed in section 7.1 of this paper.

Whether to use synchronous or asynchronous resets in a design has aimost become areligious
issue with strong proponents claiming that their reset design technique is the only way to properly
approach the subject.

In our first paper, Don and Cliff favored and recommended the use of asynchronous resetsin
designs and outlined our reasons for choosing this technique. With the help of our colleague,
Steve Golson, we have done additional analysis on the subject and are now more neutral on the
proper choice of reset implementation.

Clearly, there are distinct advantages and disadvantages to using either synchronous or
asynchronous resets, and either method can be effectively used in actual designs. When choosing a
reset style, it is very important to consider the issues related to the chosen style in order to make
an informed design decision.

This paper presents updated techniques and considerations related to both synchronous and
asynchronous reset design. This version of the paper includes updated Verilog-2001 ANSI-style
portsin all of the Verilog examples.

The first version of this paper included an interesting technique for synchronizing the resetting of
multiple ASICs of ahigh speed design application. That material has been deleted from this paper
and readers are encouraged to read the first version of the paper if this subject is of interest.
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2.0 Resets Purpose

Why be concerned with these annoying little resets anyway? Why devote a whole paper to such a
trivial subject? Anyone who has used a PC with a certain OS loaded knows that the hardware
reset comesin quite handy. It will put the computer back to a known working state (at least
temporarily) by applying a system reset to each of the chipsin the system that have or require a
reset.

For individual ASICs, the primary purpose of areset isto force the ASIC design (either
behavioral, RTL, or structural) into a known state for smulation. Once the ASIC is built, the
need for the ASIC to have reset applied is determined by the system, the application of the ASIC,
and the design of the ASIC. For instance, many data path communication ASICs are designed to
synchronize to an input data stream, process the data, and then output it. If syncisever lost, the
ASIC goes through aroutine to re-acquire sync. If thistype of ASIC is designed correctly, such
that al unused states point to the “start acquiring sync” state, it can function properly in a system
without ever being reset. A system reset would be required on power up for such an ASIC if the
state machines in the ASIC took advantage of “don’'t care” logic reduction during the synthesis
phase.

We believe that, in general, every flip-flop in an ASIC should be resetable whether or not it is
required by the system. In some cases, when pipelined flip-flops (shift register flip-flops) are used
in high speed applications, reset might be eliminated from some flip-flops to achieve higher
performance designs. Thistype of environment requires a predetermined number of clocks during
the reset active period to put the ASIC into a known state.

Many design issues must be considered before choosing a reset strategy for an ASIC design, such
as whether to use synchronous or asynchronous resets, will every flip-flop receive areset, how
will the reset tree be laid out and buffered, how to verify timing of the reset tree, how to
functionally test the reset with test scan vectors, and how to apply the reset across multiple
clocked logic partitions.

3.0 General flip-flop coding style notes
3.1 Synchronousreset flip-flops with non reset follower flip-flops

Each Verilog procedural block or VHDL process should model only one type of flip-flop. In
other words, a designer should not mix resetable flip-flops with follower flip-flops (flops with no
resets) in the same procedural block or process14]. Follower flip-flops are flip-flops that are
simple data shift registers.

In the Verilog code of Example 1a and the VHDL code of Example 1b, aflip-flop is used to
capture data and then its output is passed through afollower flip-flop. The first stage of this
design isreset with a synchronous reset. The second stage is a follower flip-flop and is not reset,
but because the two flip-flops were inferred in the same procedural block/process, the reset signal
r st _n will be used as a data enable for the second flop. This coding style will generate
extraneous logic as shown in Figure 1.
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nmodul e badFFstyle (
out put reg q2,
i nput d, clk, rst_n);
reg ql,;

al ways @ posedge cl k)
if (!'rst_n) ql <= 1'Db0O;
el se begin

gl <= d;
g2 <= qi;
end
endnodul e

Example 1a - Bad Verilog coding style to model dissmilar flip-flops

library ieee;
use ieee.std _logic_1164. all;
entity badFFstyle is

port (
cl k in std_|logic;
rst n: in std_|logic;
d : in std_|ogic;
g2 : out std_logic);

end badFFstyl e;

architecture rtl of badFFstyle is
signal g1 : std_l ogic;
begi n
process (cl k)
begi n
if (clk'event and clk = "1") then
if (rst_n="0") then
ql <= '0";
el se
gl <= d;
q2 <= qi;
end if;
end if;
end process;
end rtl;

Example 1b - Bad VHDL coding style to model dissimilar flip-flops
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Figure 1 - Bad coding style yields a design with an unnecessary loadable flip-flop

The correct way to model afollower flip-flop iswith two Verilog procedura blocks as shown in
Example 2a or two VHDL processes as shown in Example 2b. These coding styles will generate
the logic shown in Figure 2.

nmodul e goodFFstyl e (
out put reg q2,
I nput d, clk, rst_n);
reg ql,;

al ways @ posedge cl k)
if ('rst_n) gl <= 1'Db0O;
el se ql <= d;

al ways @ posedge cl k)
g2 <= qi;
endnodul e

Example 2a - Good Verilog-2001 coding style to mode dissmilar flip-flops

library ieee;
use ieee.std _logic_1164. all;
entity goodFFstyle is

port (
cl k in std_|l ogic;
rst n: in std_|logic;
d in std_|l ogic;
g2 : out std_logic);

end goodFFstyl e;

architecture rtl of goodFFstyle is
signal g1 : std_l ogic;

begi n
process (cl k)
begi n
if (clk'event and clk = "1") then
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if (rst_n="0") then
gl <= '0';
el se
gl <= d;
end if;
end if;
end process;

process (cl k)
begi n
if (clk'event and clk
g2 <= qi;
end if;
end process;
end rtl;

Example 2b - Good VHDL coding style to model dissmilar flip-flops

"1") then

d— ) q_1 L q2
rst_n — A

clk U "\

No reset on the
follower flip-flop

Figure 2 - Two different types of flip-flops, one with synchronous reset and one without

It should be noted that the extraneous logic generated by the code in Example 1a and Example 1b
isonly aresult of using a synchronous reset. If an asynchronous reset approach had be used, then
both coding styles would synthesize to the same design without any extra combinational logic.
The generation of different flip-flop stylesislargely afunction of the sengitivity listsand i f -

el se statements that are used in the HDL code. More details about the sensitivity list andi f -

el se coding styles are detailed in section 4.1.

3.2 Flip-flop inference style

Each inferred flip-flop should not be independently modeled in its own procedural block/process.
Asamatter of style, al inferred flip-flops of a given function or even groups of functions should
be described using a single procedural block/process. Multiple procedura blocks/processes
should be used to model larger partitioned blocks within a given module/architecture. The
exception to this guideline is that of follower flip-flops as discussed in section 3.1 where multiple
procedural blocks/processes are required to efficiently model the function itself.
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3.3 Assignment operator guideline

In Verilog, al assignments made inside the always block modeling an inferred flip-flop (sequential
logic) should be made with nonblocking assignment operatorg3]. Likewise, for VHDL, inferred
flip-flops should be made using signal assignments.

4.0 Synchronous resets

As research was conducted for this paper, a collection of ESNUG and SOLV-IT articles was
gathered and reviewed. Around 80+% of the gathered articles focused on synchronous reset
issues. Many SNUG papers have been presented in which the presenter would claim something
like, “we al know that the best way to do resetsin an ASIC isto strictly use synchronous resets’,
or maybe, “asynchronous resets are bad and should be avoided.” Y et, little evidence was offered
to justify these statements. There are both advantages and disadvantages to using either
synchronous or asynchronous resets. The designer must use an approach that is appropriate for
the design.

Synchronous resets are based on the premise that the reset signal will only affect or reset the state
of the flip-flop on the active edge of aclock. The reset can be applied to the flip-flop as part of
the combinational logic generating the d-input to the flip-flop. If thisisthe case, the coding style
to model the reset should beani f /el se priority style with thereset inthei f condition and all
other combinational logic inthe el se section. If this styleis not strictly observed, two possible
problems can occur. First, in some simulators, based on the logic equations, the logic can block
the reset from reaching the flip-flop. Thisisonly asimulation issue, not a hardware issue, but
remember, one of the prime objectives of areset isto put the ASIC into a known state for
simulation. Second, the reset could be a“late arriving signal” relative to the clock period, due to
the high fanout of the reset tree. Even though the reset will be buffered from areset buffer tree, it
iswise to limit the amount of logic the reset must traverse once it reaches the local logic. This
style of synchronous reset can be used with any logic or library. Example 3 shows an
implementation of this style of synchronous reset as part of aloadable counter with carry out.

nmodul e ctr8sr (
output reg [7:0] q,

out put reg co,

i nput [7: 0] d,

i nput ld, clk, rst_n);

al ways @ posedge cl k)
i f ('rst_n) {co,q} <= 9" bO; /'l sync reset
else if (1d) {co,q} <= d; /'l sync | oad
el se {co,q} <= g + 1'bl; // sync increnent

endnodul e

Example 3a - Verilog-2001 code for aloadable counter with synchronous reset
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library ieee;

use ieee.std _logic_1164.all;

use ieee.std_| ogi c_unsigned. al |;
entity ctr8sr is

port (

cl k - in std_|logic;

rst_n . in std_logic;

d in std_|logic;

I d . in std_logic;

q : out std _|logic_vector(7 downto 0);
co : out std _|logic);

end ctr8sr;

architecture rtl of ctr8sr is

signal count : std _|ogic _vector(8 dowto 0);
begi n

co <= count (8);

g <= count(7 downto 0);

process (cl k)

begi n
if (clk'event and clk = "1") then
if (rst_n="0") then
count <= (others =>"'0"); -- sync reset
elsif (Id ="1") then
count <= '0" & d; -- sync | oad
el se
count <= count + 1; -- sync increnent
end if;
end if;
end process;
end rtl;

Example 3b - VHDL code for aloadable counter with synchronous reset
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Figure 3 - Loadable counter with synchronous reset
4.1 Coding style and example circuit

The Verilog code of Example 4a and the VHDL code of 4b show the correct way to model
synchronous reset flip-flops. Note that the reset is not part of the sensitivity list. For Verilog
omitting the reset from the sensitivity list is what makes the reset synchronous. For VHDL
omitting the reset from the sensitivity list and checking for the reset after the“i f cl k’ event
and cl k = 1" statement makes the reset synchronous. Also note that the reset is given
priority over any other assignment by using thei f - el se coding style.

nmodul e sync_reset FFstyl e (
out put reg q,
i nput d, clk, rst_n);

al ways @ posedge cl k)
if ('rst_n) q <= 1'bO0O;
el se g <= d;
endnodul e

Example 4a - Correct way to model aflip-flop with synchronous reset using Verilog-2001

library ieee;
use ieee.std _logic_1164. all;
entity syncresetFFstyle is

port (
cl k - in std_|l ogic;
rst n: in std_|logic;
d : in std_|ogic;
q : out std _logic);

end syncreset FFstyl e;

architecture rtl of syncresetFFstyle is
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begi n
process (cl k)
begi n
if (clk'event and clk = "1") then
if (rst_n="0") then
q<="'0";
el se
q <= d;
end if;
end if;
end process;
end rtl;

Example 4b - Correct way to model aflip-flop with synchronous reset using VHDL

One problem with synchronous resets is that the synthesis tool cannot easily distinguish the reset
signal from any other data signal. Consider the code from Example 3, which resulted in the circuit
of Figure 3. The synthesis tool could aternatively have produced the circuit of Figure 4.

i0 q

i1 9 8 8
/ 1

sell

] -

Synchronous rst_n

and-gates are outside
the mux

. _‘ co
: d

Figure 4 - Alternative circuit for loadable counter with synchronous reset

Thisisfunctionally identical to Figure 3. The only difference is that the reset and-gates are outside
the MUX. Now, consider what happens at the start of a gate-level smulation. The inputs to both
legs of the MUX can be forced to O by holding r st _n asserted low, however if | d isunknown
(X) and the MUX model is pessimistic, then the flops will stay unknown (X) rather than being
reset. Note thisis only a problem during ssmulation! The actual circuit would work correctly and
reset the flopsto 0.

Synopsys provides the compiler directive sync_set _r eset which tells the synthesis tool that
agiven signal is a synchronous reset (or set). The synthesis tool will “pull” this signal as close to
the flop as possible to prevent thisinitialization problem from occurring. In this example the
directive would be used by adding the following line somewhere inside the modul e:
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[l synopsys sync_set reset "rst_n"

In general, we recommend only using Synopsys switches when they are required and make a
difference; however thesync_set _reset directive does not affect the logical behavior of a
design, instead it only impacts the functional implementation of a design. A wise engineer would
prefer to avoid re-synthesizing the design late in the project schedule and would add the
sync_set reset directiveto al RTL code from the start of the project. Since this directiveis
only required once per module, adding it to each module with synchronous resetsis
recommended.

Alternatively the synthesisvariablehdl i n_ff _al ways_sync_set reset canbesetto
t r ue prior to reading in the RTL, which will give the same result without requiring any
directives in the code itsalf.

A few years back, another ESNUG contributor recommended adding the

conpil e_preserve_sync_resets = "true" synthessvariable[15]. Although this
variable might have been useful afew years ago, it was discontinued starting with Synopsys
version 3.4b[38].

4.2 Advantages of synchronousresets

Synchronous reset logic will synthesize to smaller flip-flops, particularly if the reset is gated with
the logic generating the d-input. But in such a case, the combinational logic gate count grows, so
the overall gate count savings may not be that significant. If adesign istight, the area savings of
one or two gates per flip-flop may ensure the ASIC fitsinto the die. However, in today’s
technology of huge die sizes, the savings of a gate or two per flip-flop is generdly irrelevant and
will not be a significant factor of whether a design fitsinto adie.

Synchronous resets generally insure that the circuit is 100% synchronous.

Synchronous resets insure that reset can only occur at an active clock edge. The clock works as a
filter for small reset glitches; however, if these glitches occur near the active clock edge, the flip-
flop could go metastable. Thisis no different or worse than every other data input; any signal that
violates setup requirements can cause metastability.

In some designs, the reset must be generated by a set of internal conditions. A synchronous reset
is recommended for these types of designs because it will filter the logic equation glitches between
clocks.

By using synchronous resets and a pre-determined number of clocks as part of the reset process,
flip-flops can be used within the reset buffer tree to help the timing of the buffer tree keep within a
clock period.

According to the Reuse Methodology Manual (RMM)[32], synchronous resets might be easier to
work with when using cycle based ssimulators. For this reason, synchronous resets are recommend
in section 3.2.4(2™ edition, section 3.2.3 in the 1% edition) of the RMM. We believe using
asynchronous resets with a good testbench coding style, where reset stimulus is only changed on
clock edges, removes any ssimulation ease or speed advantages attributed to synchronous reset
designs by the RMM. Trandation: it is doubtful that reset style makes much difference in either
ease or speed of simulation.
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4.3 Disadvantages of synchronousresets

Not all ASIC libraries have flip-flops with built-in synchronous resets. However since
synchronous reset is just another data input, you don’t really need a specia flop. The reset logic
can easlly be synthesized outside the flop itself.

Synchronous resets may need a pulse stretcher to guarantee a reset pulse width wide enough to
ensure reset is present during an active edge of the clock[16]. Thisis an issue that isimportant to
consider when doing multi-clock design. A small counter can be used that will guarantee a reset
pulse width of a certain number of cycles.

A designer must work with simulator issues. A potential problem existsif the reset is generated
by combinational logic inthe ASIC or if the reset must traverse many levels of local combinational
logic. During simulation, depending on how the reset is generated or how the reset is applied to a
functional block, the reset can be masked by X’s. A large number of the ESNUG articles address
thisissue. Most smulators will not resolve some X-logic conditions and therefore block out the
synchronous reset[ 7][8][9][10][11][12][13][14][15][34]. Note this can also be an issue with
asynchronous resets. The problem is not so much what type of reset you have, but whether the
reset signa is easily controlled by an external pin.

By its very nature, a synchronous reset will require a clock in order to reset the circuit. This may
not be a disadvantage to some design styles but to others, it may be an annoyance. For example, if
you have a gated clock to save power, the clock may be disabled coincident with the assertion of
reset. Only an asynchronous reset will work in this situation, as the reset might be removed prior
to the resumption of the clock.

The requirement of a clock to cause the reset condition is significant if the ASIC/FPGA has an
internal tristate bus. 1n order to prevent bus contention on an internal tristate bus when achipis
powered up, the chip should have a power-on asynchronous reset (see Figure 5). A synchronous
reset could be used, however you must also directly de-assert the tristate enable using the reset
signa (see Figure 6). This synchronous technique has the advantage of a simpler timing anaysis
for the reset-to-HiZ path.

next_oe oe

clk
rst_n T

Figure 5 - Asynchronous reset for output enable
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Figure 6 - Synchronous reset for output enable

5.0 Asynchronousresets

Improper implementation of asynchronous resets in digital logic design can cause serious
operational design failures.

Many engineers like the idea of being able to apply the reset to their circuit and have the logic go
to aknown state. The biggest problem with asynchronous resetsis the reset release, also called
reset removal. The subject will be elaborated in detail in section 6.0.

Asynchronous reset flip-flops incorporate a reset pin into the flip-flop design. Thereset pinis
typicaly active low (the flip-flop goesinto the reset state when the signal attached to the flip-flop
reset pin goesto alogic low level.)

5.1 Coding style and example circuit

The Verilog code of Example 5a and the VHDL code of Example 5b show the correct way to
model asynchronous reset flip-flops. Note that the reset is part of the sensitivity list. For Verilog,
adding the reset to the sengitivity list is what makes the reset asynchronous. In order for the
Verilog smulation model of an asynchronous flip-flop to simulate correctly, the sensitivity list
should only be active on the leading edge of the asynchronous reset signal. Hence, in Example 5a,
the always procedure block will be entered on the leading edge of the reset, then thei f condition
will check for the correct reset level.

Synopsys requires that if any signal in the sengitivity list is edge-sengitive, then all signalsin the
sengitivity list must be edge-sensitive. In other words, Synopsys forces the correct coding style.
Verilog smulation does not have this requirement, but if the sensitivity list were sensitive to more
than just the active clock edge and the reset leading edge, the simulation model would be
incorrect[5]. Additionally, only the clock and reset signals can be in the sengitivity list. If other
signas areincluded (legal Verilog, illegal Verilog RTL synthesis coding style) the smulation
model would not be correct for aflip-flop and Synopsys would report an error while reading the
model for synthesis.

For VHDL, including the reset in the sensitivity list and checking for the reset before the “i f
cl k’ event and cl k = 1" statement makes the reset asynchronous. Also note that the
reset is given priority over any other assignment (including the clock) by using thei f /el se
coding style. Because of the nature of aVHDL sensitivity list and flip-flop coding style,
additional signals can be included in the sengitivity list with no ill effects directly for smulation
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and synthesis. However, good coding style recommends that only the signals that can directly
change the output of the flip-flop should be in the sengitivity list. These signals are the clock and
the asynchronous reset. All other signals will dow down simulation and be ignored by synthesis.

nmodul e async_reset FFstyl e (
out put reg q,
I nput d, clk, rst_n);

/1 Verilog-2001: permts conma-separation
/'l @ posedge clk, negedge rst_n)
al wvays @ posedge cl k or negedge rst_n)
if ('rst_n) q <= 1'bO0O;
el se g <= d;
endnodul e

Example 5a - Correct way to model aflip-flop with asynchronous reset using Verilog-2001
library ieee;

use ieee.std _logic_1164. all;
entity asyncresetFFstyle is

port (
cl k in std_|l ogic;
rst_ n: in std_|logic;
d - in std_logic;
q : out std _logic);

end asyncreset FFstyl e;

architecture rtl of asyncresetFFstyle is
begi n
process (clk, rst_n)
begi n
if (rst_n="0") then
q<='0;
elsif (clk'event and clk = "1") then
q <= d;
end if;
end process;
end rtl;

Example 5b - Correct way to model aflip-flop with asynchronous reset using VHDL

The approach to synthesizing asynchronous resets will depend on the designers approach to the
reset buffer tree. If thereset isdriven directly from an externa pin, then usualy doing a

set _drive 0 onthereset pinanddoingaset _dont _t ouch_net wor k on the reset net
will protect the net from being modified by synthesis. However, thereis at least one ESNUG
article that indicates thisis not always the case[18].
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One ESNUG contributor[17] indicates that sometimesset _r esi st ance 0 on thereset net
might also be needed.

Alternatively rather than having set _r esi st ance 0 on the net, you can create a custom
wireload model with resistance=0 and apply it to the reset input port with the command:

set_ wire |load -port_list reset

A recently updated SolvNet article aso notes that starting with Synopsys release 2001.08 the
definition of ideal nets has dightly changed[41] and that aset i deal _net command can be
used to create ideal nets and “get no timing updates, get no delay optimization, and get no DRC
fixing.”

Our colleague, Chris Kiegle, reported that doing a set_disable_timing on a net for pre-v2001.08
designs helped to clean up timing reports 2], which seems to be supported by two other SolvNet
articles, one related to synthesis and another related to Physical Synthes's, that recommend usage
of bothaset fal se pathandaset di sabl e _ti m ng command[35].

5.2 Modeling Verilog flip-flops with asynchronous reset and asynchronous set

One additional note should be made here with regards to modeling asynchronous resets in
Verilog. The smulation model of aflip-flop that includes both an asynchronous set and an
asynchronous reset in Verilog might not simulate correctly without alittle help from the designer.
In general, most synchronous designs do not have flop-flops that contain both an asynchronous
set and asynchronous reset, but on the occasion such aflip-flop is required. The coding style of
Example 6 can be used to correct the Verilog RTL simulations where both reset and set are
asserted simultaneously and reset is removed first.

First note that the problem is only a smulation problem and not a synthesis problem (synthesis
infers the correct flip-flop with asynchronous set/reset). The simulation problem is due to the
always block that is only entered on the active edge of the set, reset or clock signals. If the reset
becomes active, followed then by the set going active, then if the reset goes inactive, the flip-flop
should first go to areset state, followed by going to a set state. With both these inputs being
asynchronous, the set should be active as soon as the reset is removed, but that will not be the
case in Verilog since there is no way to trigger the aways block until the next rising clock edge.

For those rare designs where reset and set are both permitted to be asserted simultaneously and
then reset is removed firgt, the fix to this smulation problem isto model the flip-flop using self-
correcting code enclosed within the translate_off/trandate_on directives and force the output to
the correct value for this one condition. The best recommendation here isto avoid, as much as
possible, the condition that requires a flip-flop that uses both asynchronous set and asynchronous
reset. The code in Example 6 shows the fix that will smulate correctly and guarantee a match
between pre- and post-synthesis smulations. This code uses the trandate _off/translate_on
directives to force the correct output for the exception condition[5].
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/1 Good DFF with asynchronous set and reset and self-
[l correcting set-reset assignnent
nmodul e dff 3 _aras (

out put reg q,

i nput d, clk, rst_n, set_n);

al ways @ posedge cl k or negedge rst_n or negedge set _n)

if (!'rst_n) g <= 0; // asynchronous reset
else if (!set_n) q <= 1; // asynchronous set
el se g <= d;

/1 synopsys translate off
al ways @rst_n or set_n)
if (rst_n && !set_n) force q = 1;

el se rel ease q;
[l synopsys translate on
endnodul e

Example 6 — Verilog Asynchronous SET/RESET simulation and synthesis model
5.3 Advantages of asynchronousresets

The biggest advantage to using asynchronous resets is that, as long as the vendor library has
asynchronoudly reset-able flip-flops, the data path is guaranteed to be clean. Designs that are
pushing the limit for data path timing, can not afford to have added gates and additional net delays
in the data path due to logic inserted to handle synchronous resets. Using an asynchronous reset,
the designer is guaranteed not to have the reset added to the data path. The code in Example 7
infers asynchronous resets that will not be added to the data path.

nodul e ctr8ar (
output reg [7:0] q,

out put reg Co;

i nput [7: 0] d;

i nput ld, rst_n, clk;

al ways @ posedge cl k or negedge rst_n)
i f ('rst_n) {co,q} <= 9" bO; /'l async reset
else if (1d) {co,q} <= d; /'l sync | oad
el se {co,q} <= g + 1'bl; // sync increnent

endnodul e

Example 7a - Verilog-2001 code for aloadable counter with asynchronous reset

library ieee;

use ieee.std _logic_1164.all;

use ieee.std_ | ogi c_unsigned. al |;
entity ctr8ar is

port (
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cl k in std_|logic;

rst_n . in std_logic;
d . in std_logic;
I d . in std_logic;
q : out std _|logic_vector(7 downto 0);
co : out std _|logic);
end ctr8ar;

architecture rtl of ctr8ar is

signal count : std _|ogic _vector(8 downto 0);
begi n

co <= count (8);

g <= count(7 downto 0);

process (cl k)

begi n
if (rst_n="0") then
count <= (others =>"'0"); -- sync reset
elsif (clk'event and clk = "1") then
if (Id="1") then
count <= '0" & d; -- sync | oad
el se
count <= count + 1; -- sync increnent
end if;
end if;
end process;
end rtl;

Example 7b- VHDL code for a loadable counter with asynchronous reset

Asynchronous rst_n
(no extra path delay)

]
clk
rst_n &

Figure 7 - Loadable counter with asynchronous reset

co
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Another advantage favoring asynchronous resets is that the circuit can be reset with or without a
clock present.

The experience of the authorsis that by using the coding style for asynchronous resets described
in this section, the synthesis interface tends to be automatic. That is, there is generally no need to
add any synthesis attributes to get the synthesis tool to map to a flip-flop with an asynchronous
reset pin.

5.4 Disadvantages of asynchronousresets
There are many reasons given by engineers as to why asynchronous resets are evil.

The Reuse Methodology Manua (RMM) suggests that asynchronous resets are not to be used
because they cannot be used with cycle based simulators. Thisis smply not true. The basis of a
cycle based smulator isthat al inputs change on aclock edge. Since timing is not part of cycle
based simulation, the asynchronous reset can smply be applied on the inactive clock edge.

For DFT, if the asynchronous reset is not directly driven from an 1/0 pin, then the reset net from
the reset driver must be disabled for DFT scanning and testing. Thisis required for the
synchronizer circuit shown in section 6.

Some designers claim that static timing analysisis very difficult to do with designs using
asynchronous resets. The reset tree must be timed for both synchronous and asynchronous resets
to ensure that the release of the reset can occur within one clock period. Thetiming analysis for a
reset tree must be performed after layout to ensure this timing requirement is met. Thistiming
analysis can be eliminated if the design uses the distributed reset synchronizer flip-flop tree
discussed in section 8.2.

The biggest problem with asynchronous resets is that they are asynchronous, both at the assertion
and at the de-assertion of the reset. The assertion is anon issue, the de-assertion isthe issue. If
the asynchronous reset is released at or near the active clock edge of aflip-flop, the output of the
flip-flop could go metastable and thus the reset state of the ASIC could be lost.

Another problem that an asynchronous reset can have, depending on its source, is Spurious resets
due to noise or glitches on the board or system reset. See section 8.0 for a possible solution to
reset glitches. If thisisareal problem in a system, then one might think that using synchronous
resetsisthe solution. A different but similar problem exists for synchronous resets if these
spurious reset pulses occur near a clock edge, the flip-flops can still go metastable (but thisistrue
of any datainput that violates setup requirements).

6.0 Asynchronous reset problem

In discussing this paper topic with a colleague, the engineer stated first that since all he was
working on was FPGAS, they do not have the same reset problems that ASICs have (a
misconception). He went on to say that he always had an asynchronous system reset that could
override everything, to put the chip into a known state. The engineer was then asked what would
happen to the FPGA or ASIC if the release of the reset occurred on or near a clock edge such that
the flip-flops went metastable.
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Too many engineers just apply an asynchronous reset thinking that there are no problems. They
test the reset in the controlled simulation environment and everything works fine, but then in the
system, the design fails intermittently. The designers do not consider the idea that the release of
the reset in the system (non-controlled environment) could cause the chip to go into a metastable
unknown state, thus voiding the reset all together. Attention must be paid to the release of the
reset so as to prevent the chip from going into a metastable unknown state when reset is rel eased.
When a synchronous reset is being used, then both the leading and trailing edges of the reset must
be away from the active edge of the clock.

As shown in Figure 8, an asynchronous reset signal will be de-asserted asynchronous to the clock
signal. There are two potential problems with this scenario: (1) violation of reset recovery time
and, (2) reset removal happening in different clock cyclesfor different sequential elements.

tpd trec

|l II“:

rst_nis -
asynchronous D
to clk !

clk

rst_n

M

Figure 8 - Asynchronous reset removal recovery time problem
6.1 Reset recovery time

Reset recovery time refers to the time between when reset is de-asserted and the time that the
clock signal goes high again. The Verilog-2001 Standard[29] has three built-in commands to
model and test recovery time and signal removal timing checks: $recovery, $removal and $recrem
(the latter is a combination of recovery and removal timing checks).

Recovery timeis also referred to as atsu setup time of the form, “PRE or CLR inactive setup
time before CLK- "[1].

Missing arecovery time can cause signa integrity or metastability problems with the registered
data outputs.

6.2 Reset removal traversing different clock cycles

When reset removal is asynchronous to the rising clock edge, dight differences in propagation
delaysin either or both the reset signal and the clock signal can cause some registers or flip-flops
to exit the reset state before others.
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7.0 Reset synchronizer

Guiddine: EVERY ASIC USING AN ASYNCHRONOUSRESET SHOULD INCLUDE A
RESET SYNCHRONIZER CIRCUIT!!

Without areset synchronizer, the usefulness of the asynchronous reset in the final systemisvoid
even if the reset works during simulation.

The reset synchronizer logic of Figure 9 is designed to take advantage of the best of both
asynchronous and synchronous reset styles.

When reset is de-asserted
asynchronously ...

... masterrst_n is removed /—\
L

synchronously

\\‘ masterrst_n

TTT1

[

Reset distribution
buffer tree

Asynchronous
reset assertion

Figure 9 - Reset Synchronizer block diagram

An external reset signal asynchronously resets a pair of master reset flip-flops, which in turn drive
the master reset signal asynchronously through the reset buffer tree to the rest of the flip-flopsin
the design. The entire design will be asynchronously reset.

Reset removal is accomplished by de-asserting the reset signal, which then permits the d-input of
the first master reset flip-flop (which istied high) to be clocked through areset synchronizer. It
typically takes two rising clock edges after reset removal to synchronize removal of the master
reset.

Two flip-flops are required to synchronize the reset signa to the clock pulse where the second
flip-flop is used to remove any metastability that might be caused by the reset signal being
removed asynchronously and too close to the rising clock edge. As discussed in section 5.4, these
synchronization flip-flops must be kept off of the scan chain.
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Figure 10 - Predictable reset removal to satisfy reset recovery time

A closer examination of the timing now shows that reset distribution timing is the sum of the a
clk-to-q propagation delay, total delay through the reset distribution tree and meeting the reset
recovery time of the destination registers and flip-flops, as shown in Figure 10.

The code for the reset synchronizer circuit is shown in Example 8.

nodul e async_reset FFstyl e2 (
output reg rst_n,
i nput cl k, asyncrst_n);
reg rffi,;

al ways @ posedge cl k or negedge asyncrst_n)
if (tasyncrst_n) {rst_n,rffl} <= 2'Db0;
el se {rst_n,rffl} <= {rff1,1 bl};
endnodul e

Example 8a - Properly coded reset synchronizer using Verilog-2001

library ieee;
use ieee.std _logic_1164. all;
entity asyncresetFFstyle is

port (
cl k in std_|logic;
asyncrst_n : in std_logic;
rst_n : out std _|logic);

end asyncreset FFstyl e;

SNUG Boston 2003 21 Asynchronous & Synchronous Reset
Rev 1.0 Design Techniques - Part Deux



architecture rtl of asyncresetFFstyle is
signal rffl : std_| ogic;
begi n
process (cl k, asyncrst_n)
begi n
i f (asyncrst n ='0") then
rffl <=
rst_n <="
elsif (clk'e
rffi1 <="
rst_ n <=
end if;
end process;
end rtl;

e’nt and cl k "1'") then

_"'H< O_Ol

f’l

Example 8b - Properly coded reset synchronizer using VHDL
7.1 Reset Synchronizer Metastability??

Ever since the publication of our first resets paper[4], we have received numerous email messages
asking if the reset synchronizer has potential metastability problems on the second flip-flop when
reset is removed. The answer is that the reset synchronizer DOES NOT have reset metastability
problems. The analysis and discussion of related issues follows.

Thefirst flip-flop of the reset synchronizer does have potential metastability problems because the
input istied high, the output has been asynchronously reset to a 0 and the reset could be removed
within the specified reset recovery time of the flip-flop (the reset may go high too close to the
rising edge of the clock input to the same flip-flop). Thisis why the second flip-flop is required.

The second flip-flop of the reset synchronizer is not subject to recovery time metastability because
the input and output of the flip-flop are both low when reset is removed. Thereisno logic
differential between the input and output of the flip-flop so there is no chance that the output
would oscillate between two different logic values.

7.2 Erroneous ASIC Vendor Modeling

One engineer emailed to tell usthat he had run smulations with four different ASIC libraries and
that the flip-flop outputs of two of the ASIC libraries were going unknown during gate-level
simulation when the reset was removed too close to the rising clock edge[44]. Thisistypicaly an
ASIC library modeling problem. Some ASIC vendors make the mistake of applying a genera
recovery time specification without consideration of the input and output values being the same.
When we asked the engineer to examine the transistor-level version of the model, he emailed back
that the circuit was indeed not susceptible to metastability problemsiif the d-input was low when a
reset recovery violation occurred; trandation, the vendor had mistakenly applied a general reset
recovery time to the flip-flop model.

7.3 Flawed Reset De-M etastabilization Cir cuit

One engineer suggested using the circuit in Figure 11 to remove metastability. The flip-flop in the
circuit is an asynchronously reset flip-flop.
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Figure 11 - Flawed reset synchronizer #1

Upon further query, the engineer reported that the output and-gate was used to remove
metastability if reset is asserted too close to an active clock edge[28]. Thisis not necessary. There
IS no reset metastability issue when reset is asserted because the reset signal bypasses the clock
signal in aflip-flop circuit to cleanly force the output low. The metastability issue is aways related
to reset removal.

This engineer handled reset recovery issues as a post place & route task. The reset delays would
be measured and if necessary, afalling-clock flip-flop would be substituted for the flip-flop shown
in Figure 11.

We are not convinced that thisis arobust solution to the problem because min-max process
variations may cause some reset circuits to fail if they have significantly different timing
characteristics than the measured prototype device.

7.4 Simulation testing with resets

One EDA support engineer reported that design engineers are running simulations and releasing
reset on the active edge of the clock. It should be noted that most of the time, thisisa Verilog
race condition and is ailmost always a rea hardware race condition.

On real hardware, if the reset signal is removed coincident with arising clock edge, the reset
signa will violate the reset recovery time specification for the device and the output of the flip-
flop could go metastable. This is another important reason why the reset synchronizer circuit
described in section 7.0 is used for designs that include asynchronous reset logic.

Inasimulation, if reset is removed on a posedge clock, there is usually no guarantee what the
simulation result will be. Even if the RTL code behaves as expected, the gate-level ssimulation may
behave differently due to event scheduling race conditions and different IEEE-V erilog compliant
simulators may even yield different RTL simulation results. Most ASIC libraries will drive an X-
output from the gate-level flip-flop simulation model when a reset recovery time violation occurs
(typicaly modeled using a User Defined Primitive, or UDP for short).

Since one important goal related to testbench creation is to make sure that the same testbench can
be used to verify the same results for both pre- and post-synthesis smulations, in our testbenches
we aways change the reset signal on the inactive clock edge, far away from any potentia
recovery time violation and simulation race condition.

Guideline: In general, change the testbench reset signal on the inactive clock edge using
blocking assignments.
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Another good testbench strategy is to assert reset at time O to initialize all resetable registers and
flip-flops. Asserting reset at time zero could also cause a Verilog race condition but this race
condition can be easily avoided by making the first testbench assignment to reset using a
nonblocking assignment as shown in Example 9. Using a time-0 nonblocking assignment to reset
causes the reset signal to be updated in the nonblocking update events region of the Verilog event
gueue at time O, forcing all procedural blocks to become active before the reset signal is asserted,
which means al reset-sensitive procedural blocks are guaranteed to trigger at time O (no Verilog
race issues).

initial begin /1l clock oscillator
clk <= 0; /1 time O nonbl ocki ng assi gnnent
forever #( CYCLE/2) clk = ~clKk;

end

initial begin
rst_n <= 0; /1 time O nonbl ocki ng assi gnnent
@ posedge cl k) ; /[l Wait to get past time O
@ negedge clk) rst =1; // rst_n low for one clock cycle

end
Example 9 - Good coding style for time-0 reset assertion

One EDA tool support engineer who receives complaints about Verilog race conditions by
engineers that release reset coincident with the active clock edge in their testbenches (as noted
above, thisisareal hardware race condition, a Verilog simulation race condition, and in our
opinion asign of a poorly trained Verilog engineer) recommended that design engineers avoid
asynchronous-reset flip-flops to eliminate the potentia Verilog race conditions related to reset
removel. He then showed atypical asynchronous reset flip-flop model similar to the one shown in
Example 10.

al ways @ (posedge cl k or negedge rst_n)
if ('rst_n) q <= 0;
el se g <= d;

Example 10 - Typical coding style for flip-flops with asynchronous resets

He correctly noted that either the clk would go high while rst_nislow, causing q to be reset, or
clk could go high after rst_nisreleased, causing q to be assigned the value of d.

We pointed out that synchronous reset flip-flops can experience the same non-deterministic
simulation results for the exact same reason and that synchronous reset flip-flops do not change
the fact that this would still be areal hardware problem. Conclusion: do not release reset
coincident with the active clock edge of the design from a testbench. This might make a good
interview question for design and verification engineers!
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8.0 Reset distribution tree

The reset distribution tree requires almost as much attention as a clock distribution tree, because
there are generally as many reset-input loads as there are clock-input loads in atypical digital
design, as shown in Figure 12. The timing requirements for reset tree are common for both
synchronous and asynchronous reset styles.

Clock distribution tree ]
clk e/ I
ji - / v
e, g
1]
- ‘ ,j
- masterrst_n __
- _9
rst_n . ~D __
The reset distribution tree has

L4

almost as many loads as the
clock distribution tree

Figure 12 - Reset distribution tree

One important difference between a clock distribution tree and a reset distribution tree is the
requirement to closely balance the skew between the distributed resets. Unlike clock signals, skew
between reset signalsis not critical aslong as the delay associated with any reset signd is short
enough to alow propagation to al reset loads within a clock period and still meet recovery time
of al destination registers and flip-flops.

Care must be taken to analyze the clock tree timing against the clk-g-reset tree timing. The safest
way to clock areset tree (synchronous or asynchronous reset) is to clock the internal-master-reset
flip-flop from aleaf-clock of the clock tree as shown in Figure 13. If this approach will meet
timing, lifeisgood. In most cases, there is not enough time to have a clock pulse traverse the
clock tree, clock the reset-driving flip-flop and then have the reset traverse the reset tree, all
within one clock period.
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Figure 13 - Reset tree driven from a delayed, buffered clock

In order to help speed the reset arrival to al the system flip-flops, the reset-driver flip-flop is
clocked with an early clock as shown in Figure 14. Post layout timing analysis must be made to
ensure that the reset release for asynchronous resets and both the assertion and release for
synchronous reset do not beat the clock to the flip-flops, meaning the reset must not violate setup
and hold on the flops. Often detailed timing adjustments like this can not be made until the layout
isdone and real timing is available for the two trees.
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Figure 14 - Reset synchronizer driven in parallél to the clock distribution tree

Ignoring this problem will not make it go away. Gee, and we all thought resets were such abasic
topic.

8.1 Synchronousreset distribution technique

For synchronous resets, one technique is to build a distributed reset buffer tree with flops
embedded in the tree. This keeps the timing requirements fairly smple, because you don’t have to
reach every flip-flop in one clock period. In each module, the reset input to the module is run
through a simple D-flip-flop, and then this delayed reset is used to reset logic inside the module
and to drive the reset input of any submodules. Thusit may take severa clocks for al flip-flopsin
the design to be reset (Note: similar problems are seen with multi-clock designs where the reset
signal must cross clock domains). Thus each module would contain code such as

i nput reset_raw,

[l synopsys sync_set reset "reset"
al ways @ (posedge cl k) reset <= reset _raw,

wherer eset isused to synchronously reset al logic within the enclosed module, and is also
connected to ther eset _r aw port of any submodules.
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With such a technique the synchronous reset signal can be treated like any other data signal, with
easy timing anaysis for every module in the design, and reasonable fanouts at any stage of the
reset tree.

8.2 Asynchronousreset distribution technique

For asynchronous resets, an interesting technique is to again use a distributed asynchronous reset
synchronizer scheme, similar to the reset tree described in section 8.1, to replace the reset buffer
tree.

This approach for asynchronous resets places reset synchronizers at every level of hierarchy of the
design. Thisisthe same approach as distributing synchronous reset flip-flops as discussed in
section 8.1. The difference, is that there are two flip-flops per reset synchronizer at each level
instead of one flip-flop used for the synchronous reset approach. The local reset drives the
asynchronous reset inputs to local flip-flops instead of being gated into the data path as done with
the synchronous reset technique.

This method of distributed reset synchronizers will reset the same as having one reset
synchronizer at the top level, in that the design will asynchronously reset when reset is applied and
will be synchronoudly released from the reset. However, the design will be released from reset
over anumber of clock cycles as the release of reset trickles through the hierarchical reset tree.

Note that using this technique, the whole design may not come out of reset at the same time
(within the same clock cycle). Whether or not thisis a problem is design dependent. Most
designs can deal with the release of reset across many clocks. If the design functionality is such
that the whole design must come out of reset within the same clock cycle, then the reset tree of
reset synchronizers must be balanced at al end points. Thisistrue for both synchronous and
asynchronous resets.

Section 8.0 discussed detail s about buffering the global asynchronous reset tree. The biggest
problem with this approach is the timing verification of the reset tree to ensure that the release of
the reset occurs within one clock period. Preliminary analysis can be done prior to place and
route, but the reset tree from section 8.0 must be analyzed after place & route (P& R).
Unfortunately, if timing adjustments are required, the designer most often must make these
adjustments by hand in the P& R domain and then re-time the routed design, repeating this process
until the timing requirements are met. The approach discussed in this section using the distributed
reset synchronizers removes the backend manual adjustments and will alow the synthesis tools to
do the job of timing and buffering the design automatically. Using this distribution technique, the
reset buffering is completely local to the current level (the same as with the synchronous approach
discussed in section 8.1).

When using asynchronous resets, it is vitally important that the designer uses the proper variables
set to the proper settings in both DC and PT to ensure that the asynchronous reset driven from
the g-output of the reset synchronizing flip-flops are buffered (if needed) and timed. Details on
these settings can be found in SolvNet article #901989[43]. The article states, both DC and PT
can and will time to the asynchronous reset input against the local clock if the following variables
are set:

SNUG Boston 2003 28 Asynchronous & Synchronous Reset
Rev 1.0 Design Techniques - Part Deux



pt _shell > set tim ng_disabl e_recovery_renoval checks "fal se"
dc_shel | > enabl e_recovery renoval arcs "true"

These settings should be the default setting from Synopsys (just make sure they are set for your
environment). With these flags set correctly, and the distributed reset synchronizers, the clock-
tree-like task of building a buffered reset tree is eliminated.

If you are designing FPGAS, then the reset synchronizer distribution method discussed in this
section may be preferred[30]. There are two good reasons this may be true: (1) The Global
Set/Reset (GSR) buffer on most FPGAs does both asynchronous reset and asynchronous reset
removal with all of the associated problems related to asynchronous reset removal aready
detailed in this paper. Unless an FPGA vendor has implemented a reset synchronizer on-chip, the
engineer will need to implement an off-chip asynchronous reset synchronizer and the inter-chip
pin-pad delays may be too slow to effectively implement. (2) It is not unusual to have multiple
clock buffers with multiple clock domains but only one GSR buffer and each clock domain should
control a corresponding reset synchronizer (discussed in section 11.0).

Thereis also agood reason to consider using asynchronous resets instead of synchronous resets
in an FPGA device. In general, FPGASs have an abundance of flip-flops, but FPGA design speed is
often limited by the size of the combinational blocks required for the design. If ablock of
combinational logic does not fit into asingle cell of FPGA |ookup tables, the combinational logic
must be continued in additional lookup tables with corresponding lookup delays and inter-cell
routing delays. The use of synchronous resets typically requires at least part of alookup table that
might be needed by a combinational logic block.

And finally, DFT for FPGAsis anon-issue since FPGA designs do not include DFT internal scan,
thus the issues regarding DFT with asynchronous resets on an FPGA do not exist.

9.0 Reset-glitch filtering

As stated earlier in this paper, one of the biggest issues with asynchronous resets is that they are
asynchronous and therefore carry with them some characteristics that must be dealt with
depending on the source of the reset. With asynchronous resets, any input wide enough to meet
the minimum reset pulse width for aflip-flop will cause the flip-flop to reset. If thereset lineis
subject to glitching, this can be areal problem. Presented here is one approach that will work to
filter out the glitches, but it isugly! This solution requires that a digital delay (meaning the delay
will vary with temperature, voltage and process) to filter out small glitches. The reset input pad
should also be a Schmidt triggered pad to help with glitch filtering. Figure 15 shows the
implementation of this approach.
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Figure 15 - Reset glitch filtering

In order to add the delay, some vendors provide a delay hard macro that can be hand instantiated.
If such adelay macro is not available, the designer could manually instantiate the delay into the
synthesized design after optimization — remember not to optimize this block after the delay has
been inserted or it will be removed. Of course the elements could have don’t touch attributes
applied to prevent them from being removed. A second approach is to instantiated a slow buffer
in amodule and then instantiated that module multiple times to get the desired delay. Many
variations could expand on this concept.

This glitch filter isnot needed in al systems. The designer must research the system requirements
to determine whether or not adelay is needed.

10.0 DFT for asynchronousresets

One important issue related to asynchronous resets has to do with the use of Design For Test
(DFT). Engineers have commented that the toughest part about using asynchronous resetsin a
designisrelated to DFT[26] while other engineers that are using DFT with asynchronous resets
clam it isnot difficult[6]. If an asynchronous reset is being gated and used as an active functional
input, DFT becomes difficult.

If the asynchronous reset is used as part of the functional design, then al the commentsin
ESNUG #409 item 11[26] regarding DFT difficulties are correct. DFT will be hard, if not
impossible. The functional design is no longer following the base design guidelines for
synchronous design that the synthesis and timing analysis tools require for accurate and correct
results. The guidelines recommended in this paper with regards to asynchronous reset are based
on the reset being only an initialization reset and that reset is not part of the functionality of the
device. Theonly logic in the reset path would be the reset synchronizers. If this design approach
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is used, then the DFT approach discussed below provides avery simple and thorough approach to
DFT for asynchronous reset.

Applying Design for Test (DFT) functionality to adesign is atwo step process. Firgt, the flips-
flopsin the design are stitched together into a scan chain accessible from external 1/0 pins, thisis
called scan insertion. The scan chain istypically not part of the functional design. Second, a
software program is run to generate a set of scan vectors that, when applied to the scan chain, will
test and verify the design. This software program is called Automatic Test Program Generation
or ATPG. The primary objective of the scan vectorsis to provide foundry vectors for
manufacture tests of the wafers and die as well as tests for the fina packaged part.

The process of applying the ATPG vectorsto create atest is based on:
1. scanning aknown state into all the flip-flopsin the chip,
2. switching the flip-flops from scan shift mode, to functional data input mode,
3. applying one functiona clock,
4. switching the flip-flops back to scan shift mode to scan out the result of the one
functional clock while scanning in the next test vector.

The DFT process usually requires two control pins. One that puts the design into “test mode.”
This pinis used to mask off non-testable logic such as internally generated asynchronous resets,
asynchronous combinationa feedback loops, and many other logic conditions that require specia
attention. Thispinisusualy held constant during the entire test. The second control pinisthe
shift enable pin.

In order for the ATPG vectors to work, the test program must be able to control al the inputs to
the flip-flops on the scan chain in the chip. Thisincludes not only the clock and data, but also the
reset pin (synchronous or asynchronous). If the reset is driven directly from an 1/O pin, then the
reset isheld in anon-reset state. If the reset isinternally generated, then the master internal reset
isheld in anon-reset state by the test mode signal. If the internally generated reset were not
masked off during ATPG, then the reset condition might occur during scan causing the flip-flops
in the chip to be reset, and thus lose the vector data being scanned in.

Even though the asynchronous reset is held to the non-reset state for ATPG, this does not mean
that the reset/set cannot be tested as part of the DFT process. Before locking out the reset with
test mode and generating the ATPG vectors, afew vectors can be manually generated to create
reset/set test vectors. The process required to test asynchronous resets for DFT is very straight
forward and may be automatic with some DFT tools. |If the scan tool does not automatic test the
asynchronous resetg/sets, then they must be setup manually. The basic steps to manually test the
asynchronous resets/sets are as follows:

scan in al onesinto the scan chain

issue and release the asynchronous reset

scan out the result and scan in al zeros

issue and release the reset

scan out the result

set the reset input to the non reset state and then apply the ATPG generated vectors.

Thistest approach will scan test for both asynchronous resets and sets. These manually generated
vectors will be added to the ATPG vectorsto provide a higher fault coverage for the manufacture
test. If the design uses flip-flops with synchronous reset inputs, then modifying the above manual

ourwbdpE

SNUG Boston 2003 31 Asynchronous & Synchronous Reset
Rev 1.0 Design Techniques - Part Deux



asynchronous reset test dightly will give asimilar test for the synchronous reset environment. Add
to the steps above a functiona clock while the reset is applied. All other steps would remain the
same.

For the reset synchronizer circuit discussed in this paper, the two synchronizer flips-flops should
not be included in the scan chain, but should be tested using the manual process discussed above.

11.0 Multi-clock reset issues

For amulti-clock design, a separate asynchronous reset synchronizer circuit and reset distribution
tree should be used for each clock domain. Thisis done to insure that reset signals can indeed be
guaranteed to meet the reset recovery time for each register in each clock domain.

As discussed earlier, asynchronous reset assertion is not a problem. The problem is graceful
removal of reset and synchronized startup of all logic after reset is removed.

Depending on the constraints of the design, there are two techniques that could be employed: (1)
non-coordinated reset removal, and (2) sequenced coordination of reset removal.

= arst_n
aclk All resets
P removed at nearly
rst_n the same time
T brst_n /
beclk
rst_n -
- crst_n
cclk
rst_n "

Figure 16 - Multi-clock reset removal

11.1 Non-coordinated reset removal

For many multi-clock designs, exactly when reset is removed within one clock domain compared
to when it is removed in another clock domain is not important. Typically in these designs, any
control signals crossing clock boundaries are passed through some type of request-acknowledge
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handshaking sequence and the delayed acknowledge from one clock domain to another is not
going to cause invalid execution of the hardware. For this type of design, creating separate
asynchronous reset synchronizers as shown in Figure 16 is sufficient, and the fact that ar st _n,
brst _nandcrst_n could be removed in any sequence is not important to the design.

11.2 Sequenced coor dination of reset removal

For some multi-clock designs, reset removal must be ordered and proper sequence. For thistype
of design, creating prioritized asynchronous reset synchronizers as shown in Figure 17 might be
required to insure that all acl k domain logic is activated after reset is removed before the becl k
logic, which must aso be activated before the ccl k logic becomes active.

removed in an

1st \
ordered sequence

2nd / / brst_n

belk /

it 3rd

— arst_n

Resets are
aclk

]

— crst_n

cclk ’7

rst_n l

Figure 17 - Multi-clock ordered reset removal

For this type of design, only the highest priority asynchronous reset synchronizer input is tied
high. The other asynchronous reset synchronizer inputs are tied to the master resets from higher
priority clock domains.

12.0 Conclusions

Properly used, synchronous and asynchronous resets can each guarantee reliable reset assertion.
Although an asynchronous reset is a safe way to reliably reset circuitry, removal of an
asynchronous reset can cause significant problems if not done properly.
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The proper way to design with asynchronous resets is to add the reset synchronizer logic to allow
asynchronous reset of the design and to insure synchronous reset removal to permit safe
restoration of normal design functionality.

Using DFT with asynchronous resets is still achievable as long as the asynchronous reset can be
controlled during test.

Whether the design uses synchronous or asynchronous resets, using one of the distributed flip-
flop trees as described in this paper may be worthy of consideration by the designer since they
remove many of the issues related to buffering, timing and layout of a reset tree.

In conclusion, simple little resets ... aren't!
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